Notes For Drag & Drop Talk

Drag & drop present in VCL since version Delphi 1

VCL Intra-Application Drag & Drop

Controlled by cm_Drag messages sent under various circumstances

1) Enable drag operations from the source
Set DragMode to dmAutomatic, or call BeginDrag
,

2) Indicate drop acceptance in target
Create an OnDragOver
 event handler in the target
The mouse cursor when over an acceptable target is dictated by the source’s DragCursor property

3) Implement drop functionality in target
Create an OnDragDrop event handler in the target

Sample project in VCL Drag & Drop folder.

You can programmatically achieve the same as a drag operation from a source control to a target control by calling: Target.DragDrop(Source, 0, 0).

There are also OnStartDrag
 and OnEndDrag events

Custom Drag Objects

One target may have many source controls dragged to it. The OnDragOver and OnDragDrop event handlers can get complex. To simplify things, you can create a custom drag object to represent the information being transferred by the drag. The object can be assigned to the DragObject parameter of the OnStartDrag event handler.

In a target control’s OnDragOver and OnDragDrop event handler, the Source parameter will be the drag object, rather than the various source controls.

Online help claims custom drag objects will automatically be freed. This is untrue
. You must free any drag object you create. The VCL will create a TDragControlObject is you do not create any drag object. This auto-built drag object will be destroyed automatically.

Drag objects will work across DLL boundaries, so long as you call the IsDragObject function. This doesn’t use is to verify if an item is of a certain class, but does a comparison of the class names instead.

Sample project in VCL Custom Drag Objects folder.

Custom Drag Cursors

When many source controls create a drag object, the drag object can specify a custom drag cursor, rather than relying on each source control’s drag cursor.

There is a GetDragCursor method that can specify a cursor to be used for where the target control will accept the dragged object (default of crDrag in TDragObject, or the control’s DragCursor property in TDragControlObject), and also when it rejects it (default of crNoDrop).

Additionally, you can supply an image list containing an image that will be merged with the drag cursor ((la Windows Explorer, whilst dragging a file around) by overriding GetDragImages
. This defaults to return nil in TDragObject, or the source control’s GetDragImages method
 in TDragControlObject.

The image list is displayed only when the mouse is off the form, or over a control with csDisplayDragImage in their ControlStyle property.

Sample project in VCL Drag Cursors folder.

Sample project in VCL Drag Cursors (Components) folder.

Windows Drag & Drop From File Manager

Harks back to Windows 3.1, and allows files to be dragged from Windows File Manager (or Windows Explorer) to your application.

Oriented around a TDropFiles structure allocated by Windows Explorer when drag operation is invoked. If mouse is dragged over a suitable candidate, a message is sent to that window to allow the files to be processed.

1) Call DragAcceptFiles to initiate a window as a target window for file dropping

2) Write a wm_DropFiles message handler that is triggered when a drop occurs

3) In the message handler, call DragQueryFile to a) find how many files are being dropped and, b) get information about each individual file

4) In the message handler, call DragQueryPoint to find where the mouse was when the drop occurred

5) When you have finished with the dropped file information, pass it to DragFinish to free the memory it occupies

6) When exiting the application, call DragAcceptFiles to stop a window being used as a target window

Sample project in Old Drag And Drop From Windows folder.

Windows Drag & Drop From Arbitrary Applications

Dealing just with being a drop target. Being a drag source is more involved, so will have to wait until another time.

1) Create a COM object that implements IDropTarget, for example your form (which already has an implementation for IUnknown).

2) Call RegisterDragDrop to register a window as a target, and the associated COM object that will manage the drop

3) When an item is dragged into your window, IDropTarget.DragEnter is called

4) As an item is dragged over your window, IDropTarget.DragOver is called

5) If item is dragged out of window, or drag operation is cancelled, IDropTarget.DragLeave is called

6) If item is dropped onto your window, IDropTarget.Drop is called

7) To handle the drop, you must access the IDataObject interface set up by the source. This keeps hold of all the formats that the data can be rendered in.

8) A given format in the IDataObject object is described by a TFormatEtc record. A given format is extracted through a TStgMedium record.

9) A richedit control can be given a data object and will work directly with it. In all other cases, you must do the job yourself. It will also automatically as a drop target for text and rich text formats.

10) The rendered formats are described in terms of clipboard formats. For example, files dragged from Explorer come in CF_HDROP format.

11) You get an object rendered in a certain way by calling the GetData method

12) Storage space is freed after use with ReleaseStgMedium.

13) When exiting the application, call RevokeDragDrop to remove the window from the list of drop targets

Sample projects in COM Drag And Drop From Windows folder. This includes the clipboard format list program, and the application that can receive dragged information.

� Takes a parameter that dictates whether the drag operation starts immediately, or after the mouse has moved a number of pixels (5, or in Delphi 4 and later, Mouse.DragThreshold).

This call is useful to allow drag operations to be initiated from edit controls, for example, which already use mouse drag operations to highlight text. You can call BeginDrag when a designated key is pressed.

It can also allow drag operations to be started with the right mouse button.

� There is a corresponding EndDrag method as well, which ends (via a drop, if possible) or cancels a drag operation. Additionally, there is a global CancelDrag procedure.

� The State parameter in calls to this event will be dsDragEnter, dsDragMove and dsDragLeave.

� Delphi 2 and later. Primarily added to cater for custom drag objects

� Delphi 2 and 3 required your custom class to be inherited from TDragObject (not TDragControlObject) for this to be true. Delphi 4 fixes this.

� This problem has been logged, unsuccessfully so far.

� Returns a TDragImageList in Delphi 3 and later or a TImageList in Delphi 2.

� This is how tree views and list views do it. You can manage a drag image list in the source component itself.

� The online help claims that if the source control has this member in the ControlStyle property, the drag image will be used regardless. This is not how it works.

