Delphi 6 New Features Masterclass: Enterprise Edition

BizSnap

· BizSnap equals Web Services & XML

Web Services

Server

· Write invokable interface (interface based on IInvokable
)

· Interface parameter types and return types can be:

· normal scalar types (as they are handled by the in-built marshaling code)

· dynamic arrays, as they have a pre-defined helper class

· For other types (static arrays, records, sets or classes):

· define a remotable class inherited from:

· TRemotable for most types, or

· TRemotableXS for types that are scalar in WSDL but do not correspond to an ObjectPascal type

· register remotable class in the remotable class registry
:

· use InvokeRegistry unit

· Call RemClassRegistry.RegisterXSClass, passing the class name, and as many of the other parameters as are useful

· Register interface in invocation registry:

· use InvokeRegistry unit

· pass RTTI for interface type, as well as a description and a few other optional fields to InvRegistry.RegisterInterface
· Implement interface in a class. Either:

· inherit from TInvokableClass, defined in InvokeRegistry unit, or

· use arbitrary class, but also write a factory procedure that has a TObject out parameter

· Register implementation class in invocation registry:

· Call InvRegistry.RegisterInvokableClass, passing class type and optionally, the factory routine

· Place components on Web application’s Web module:

· THTTPSoapDispatcher to pick up SOAP requests and dispatch them to an invoker

· THTTPSoapPascalInvoker to interpret a SOAP message request and execute corresponding invokable interface

· TWSDLHTMLPublish, if WSDL is required, which picks up WSDL requests and generates a list of WSDL documents, with potential administrative capabilities:

· WSDL for all interfaces can be obtained with http://<host path>/wsdl
· WSDL for a target interface can be obtained with http://<host path>/wsdl/interface
· Compile Web service application and make it available through a Web server

Client

· Place a THTTPRIO on the form. This is a representation of a remote invokable object accessible through HTTP. Set either:

· URL to http://<host path>/soap/interface if you know the Web service you need is written in Delphi, or

· WSDLLocation to the URL or path to WSDL document, Service to the required service
 and Port to the required port.

· No need for other two Web services components, as they are already used internally by THTTPRIO:

· TOPToSoapDomConvert, which handles the un/marshaling of SOAP method calls

· THTTPReqResp, which sends a SOAP message to a Web server to execute a method call on an invokable interface

· Use the as operator to query THTTPRIO for the server interface and use it to call its methods and access its properties

XML

· TXMLDocument represents an XML document

· Supports W3C DOM Level 2 interfaces

· Makes use of any compliant XML parsers installed on the machine (e.g., IBM and Microsoft). New parsers can be installed with RegisterDOMVendor
· XML specified through FileName or XML (TStrings) properties, and activated with Active
· Main document root node (IXMLNode) is accessed through DocumentElement property

· Changes to XML can be readily saved to disk

· XML Data Binding Wizard (File | New | Other... | XML Data Binding) generates helper classes to simplify manipulation of complicated documents through TXMLDocument alone.

· Classes have properties to surface the XML nodes and attributes

· Factory routines are generated to simplify the starting point

· XML Transform Components allow XML documents to be used in place of database servers for simple data storage/manipulation/extraction.

· Client dataset packets can be translated into XML documents and vice versa

· Rely upon transformation files (XML Mapper makes these)

· TXMLTransform transforms an XML document into a data packet (or another XML document)

· TXMLTransformProvider allows an XML document to be used as the source of a provider

· TXMLTransformClient allows an XML document to be used as the client of an application server, or of a dataset to which it connects via a TDataSetProvider.

· XML Mapper creates XML Transformation Files (.xtr files) that define the mappings between generic XML documents and client dataset data packets

· mappings can be defined:

· from an existing XML schema or document to a specified client dataset

· from an existing data packet to a new XML schema

· between an existing XML schema and an existing data packet

· supports these schema types:

· DTD (Document Type Definition)

· XDR (XML Data Reduced)

· XSD (XML schema)

· user-defined fields are dealt with by the TXMLTranform.OnTranslate event

WebSnap

· Alternative architecture to WebBroker (all WebBroker stuff is supported, plus lots more)

· Allows better application partitioning by allowing multiple Web modules

· Surface Designers provide visual feedback during Web page development. HTML, XML and XSL use syntax highlighting. Include

· HTML source file, including custom tags and server-side script (file.html)

· HTML source of file or Web page module with custom tags substituted, but including server-side script (HTML Script)

· processed HTML that goes to the client browser (HTML Result)

· The results of running the HTML in an embedded browser (Preview)

· The XML of a file or Web page module, where applicable (XML Tree)

· The XSL of a Web page module, where applicable (XSL Tree)

· Revolves around building Web pages with server side script-code that can control scriptable components in the application (adapters)

· Script defaults to JavaScript, but can be any ActiveScript language (e.g. VBScript)

· Pre-built adapters allow control of datasets, login forms, end-user sessions, etc.

· Page producers and dispatchers for servicing XSL-transformed XML pages, logical pages and your own custom adapters

· Documentation:

· Many examples

· Help tutorial (look up WebSnap, tutorial)

· White paper: Getting started with WebSnap in Delphi 6 Enterprise, John Kaster, Borland at http://community.borland.com/article/0,1410,27404,00.html
· WebSnap server side scripting documentation, by the WebSnap architect, Jim Tierney, at http://community.borland.com/article/0,1410,27467,00.html. This was the first phase of the updated reference documentation being released by Borland.

· Updated help files available at http://www.borland.com/techpubs/delphi/v6/updates/ent.html, including the missing WebSnap documentation.

· Updated version of Chapter 29 (Using WebSnap) of the Delphi 6 Developer’s Guide. This is a major revision and matches the WebSnap content of the updated DEL5DAP.HLP help file. This is at the same URL

DataSnap

· DataSnap equals MIDAS plus XML/SOAP support

· MIDAS is no longer a used term, due to a legal issue

· SOAP Server Data Module allows middle-tier application functionality to implemented as a Web service

· Connection broker support has been added to:

· make it easy to switch connection types across multiple client datasets

· switch connection types without losing all the AppServer event handlers

· Client datasets expose their data packets as XML through their XMLData property

� Same as IInterface, but with RTTI-generation enabled for all its members (and members of descendants). IInterface is the new base interface – IUnknown is defined to be equivalent to IInterface

� Also known as the remotable type registry, accessible through the RemTypeRegistry function

� Note you can experiment with pre-built Web servers that reside at xmethods.com, many of which are Delphi-built

� A service is a set of related interfaces provided by a Web Service application. You specify the service that contains the required interface

� A port defines a binding (which indicates the interface to call and the encoding and transport protocols to use) and the address of the server machine

� THTTPReqResp requires WinInet.dll to be installed so, since THTTPRIO uses this component, all Delphi Web service clients have this requirement. IE3 or later installs it

� Uses 2 TXMLTransform components internally: TransformRead and TransformWrite

� Uses an internal TXMLTransform to translate data packets from the provider into XML: TransformGetData

Page 4

